ACM 逆元 拓展欧几里得法 1 2 3 4 5 6 7 8 void exgcd(int a, int b, int& x, int& y) { if (b == 0) { x = 1, y = 0; return; } exgcd(b, a % b, y, x); y -= a / b * x; } 快速幂法 1 2 3 4 5 6 7 8 9 int qpow(long long a, int b) { int ans = 1; a = (a % p + p) % p; for (; b; b >>= 1) { if (b & 1) ans = (a * ans) % p; a = (a * a) % p; } return ans; } 线性求逆元 1 2 3 4 inv[1] = 1; for (int i = 2; i <= n; ++i) { inv[i] = (long long)(p - p / i) * inv[p % i] % p; } 线性求任意n个数逆元 1 2 3 4 5 6 s[0] = 1; //s 为前缀积 for (int i = 1; i <= n; ++i) s[i] = s[i - 1] * a[i] % p; // a 为 n 个任意数 sv[n] = qpow(s[n], p - 2); // 当然这里也可以用 exgcd 来求逆元,视个人喜好而定. for (int i = n; i >= 1; --i) sv[i - 1] = sv[i] * a[i] % p; for (int i = 1; i <= n; ++i) inv[i] = sv[i] * s[i - 1] % p;